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Abstract. The Aedes aegyptimosquito inhabits most tropical and subtropical regions of the globe, where it transmits
arboviral diseases of substantial public health relevance, such as dengue fever. In subtropical regions, Ae. aegypti often
presents anannual abundancecycle drivenbyweather conditions. Becausedifferent population statesmayshowvarying
responses to control, we are interested in studying what time of the year is most appropriate for control. To do so, we
developed two dynamic site-occupancy models based on more than 200 weeks of mosquito trapping data from nearly
900 sites in a subtropical Brazilian city. Our phenomenological, Markovianmodels, fitted to data in a Bayesian framework,
accounted for failure to detect mosquitoes in two alternative ways and for temporal variation in dynamic rates of local
extinction andcolonization of newsites. Infestation varied fromnearly full cover of the city area in late summer, to between
10% and 67% of sites occupied in winter depending on the model. Sensitivity analysis reveals that changes in dynamic
rates should have the greatest impact on site occupancy during autumn and early winter months, when the mosquito
population is declining. We discuss the implications of this finding to the timing of mosquito control.

INTRODUCTION

Control of themosquito anddisease vectorAedes aegypti is
an important public health challenge.1 Originated in Africa and
unintentionally dispersed by humans around the world, Ae.
aegypti is currently present in tropical and subtropical regions
of Africa, Asia, Oceania, and the Americas.2 It is well adapted
to urban environments because it can breed in artificial water
containers and feed on human blood.2 Although dormant
eggs can survive unfavorably cold and dry seasons, the sur-
vival, growth, and reproduction of the other life stages is
dependent on rainy and hot weather.3 Thus, Ae. aegypti
populations present high year-round abundances in tropical
humid regions and annual cycles of abundance in most other
regions where the species occurs.3 When sufficiently abun-
dant, Ae. aegypti is a vector of many disease-causing arbo-
viruses, including chikungunya,4 Zika,5 yellow fever,6 and
dengue.7 Dengue fever is of particular concern because it is
the most common human arboviral disease.8 More than one-
third of the world population is at risk of contracting dengue,9

with yearly numbers of 58million people infected, 10 thousand
deaths, and 1.14 million disability-adjusted life years (DALY)
lost because of the disease.8 Given the efficacy and safety
concerns about the only commercially available vaccine,10,11

vector control is still the most reliable way to prevent dengue
epidemics.12

Since the 1970’s, control ofAe. aegypti has reliedmostly on
ultralow-volume insecticide spraying and community-based
removal of breeding sites.7However, with all the effort that has
been spent on control, the number of people infected by the
disease is still increasing, doubling every 10 years since
1990.8 Brazil and Mexico, for example, have not managed to
contain the disease despite spending yearly amounts of,

respectively, US$450million13 andUS$83million14 during the
last decade. The growth of dengue incidence over the last 40
yearsmakes it clear that vector control has been insufficient.15

Acknowledging the need to improve vector control, the sci-
entific community and public health agencies routinely dis-
cuss existing and potential control strategies.12,16,17 These
discussions usually emphasize development and introduction
of new control methods, such as biocontrol, sterile male re-
lease, or genetic modifications that render mosquitoes in-
capable of transmitting dengue.
Our interest here is not on how but when to apply control

measures: an aspect of control planning that is easily over-
looked. Appropriate timing matters regardless of the method
of choice and requires knowledge of mosquito population
dynamics. Control interventions applied at distinct times of a
mosquito’s annual population cycle may result in very differ-
ent consequences. Modeling results suggest that intervening
when abundance reaches above a threshold may not be the
most efficient timing strategy.18 Poor timing of control mea-
sures leading to reduced density dependence at the larval
stage may even induce mosquito population growth via the
“Hydra effect.”19 Timeenters analysesofmosquito population
dynamics and dengue transmission in a variety of important
ways, ranging from empirical epidemiological models of the
timing of disease outbreak20,21 to numerical simulations of the
effect of control frequency on mosquito populations and their
resistance to insecticides.22,23 What we could not find, how-
ever,were studies about the time-relatedquestion that ismost
interesting to us: what time of the year is most appropriate for
vector control?
Direct study of control timing requires experimenting with

different control schedules while monitoring mosquito pop-
ulations. Such experiments are costly and complex to imple-
ment. We believe, however, that costs may be reduced and
experiments simplified by the indirect a priori identification of
optimal control times, via the study of mosquito population
dynamics. Sensitivity analysis is a tool developed for the study
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of age- or size-structured populations, by which one may ask
how a small change in one of the population parameters, such
as immature survival or adult fertility, impacts on a descriptor
of the population state, such as size or growth rate.24 Sensi-
tivity analysis, thus, helps identify which parameters, when
modified, produce the most cost-effective impact on a state
variable of interest. Tran et al.,25 Ellis et al.,26 and Luz et al.,23

for example, used sensitivity analysis of mosquito population
models to infer what were the life stage–specific demographic
rates to which different metrics of mosquito population state
are most sensitive. This approach is applicable in a variety of
systems, whenever a metric of population state may be af-
fected by the manipulation of different population parameters
at different times. Emery and Gross,27 for example, used
sensitivity analysis to infer the best time of the year for con-
trolled burning of an invasive plant species. In our study, we
apply sensitivity analysis to a site-occupancy model of adult
mosquito infestation. Our analysis, informed by field obser-
vations from the Brazilian city of Porto Alegre, identifies the
time of the year when predicted infestation ismost sensitive to
changes in the occupancy dynamics parameters that explain
expansion and contraction in the number of infested sites.
Effective control measures affect those occupancy dynamics

parameters, and, therefore, our sensitivity results offer hypo-
thetical best control times that can be tested by vector control
experiments in the field.

MATERIALS AND METHODS

Study setting. Our study examines Ae. aegypti infestation
in Porto Alegre, the largest city of Rio Grande do Sul, the
southernmost state in Brazil (Figure 1). The city proper has
approximately one and a half million habitants, whereas the
metropolitan area hasmore than 4million. The city’s climate is
subtropical humid,with hot summers,mildwinters, and rainfall
evenly distributed throughout the year.Aedes aegyptiwas first
recorded in Porto Alegre in 2001, and it is nowpresent in all the
city’s neighborhoods. Locally transmitted dengue cases have
been recorded since 2010, mostly in late summer and early
fall. The largest outbreak happened in 2016, with 301 con-
firmed cases. Currently, municipal dengue control relies on
peridomestic ultralow-volume insecticide spraying as well as
on community-based actions to eliminate breeding sites.
Spraying is applied within a radius of 200 m from the resi-
dence (and in some cases, theworkplace) of infected patients,
with the objective of suppressing further infections.28

FIGURE 1. The city of PortoAlegre,with its location in SouthAmerica (left) and thedistributionof adultmosquito-trapping sites throughout the city
(right).Map lines showsampling site boundaries. Blackdots showall the locationswhere a trapwasdeployedat least once throughout the 4years of
monitoring included in this study.
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Data collection. We analyze data collected by the Núcleo
deVigilânciadeRoedores eVetores (NVRV) of thePortoAlegre
Municipal Department of Health, from September 23, 2012 to
August 14, 2016.Sampling spanned204weeksandconsisted
of weekly deployment of hundreds of adult mosquito traps
throughout the city. Thenumberof trapsdeployed inoneweek
ranged from 481, in September 23, 2012, to 893, in October 8,
2016, increasing through time according to the availability of
resources and the monitoring priorities of the NVRV. Trap lo-
cations were kept constant after the first deployment, with only
minor changesbetweenadjacentpropertiesdue toaccessibility
problems beyond the control of the NVRV. The choice of trap-
ping locations followed the spatial distribution of confirmed
dengue cases and evidence of Aedes spp. infestation from
household surveys of larvae-bearing containers. Traps were
deployed outdoors either in public or private places and with a
minimum distance of 250 meters from each other.
The NVRV uses a commercially available adult mosquito

trap (Mosquitraps®; Ecovec, Belo Horizonte, Brazil), which
consists of a 30-cm-high black plastic cylinder with a funnel-
shaped opening on top. When deployed, traps were half filled
with water treated with a slow-release chemical attractive that
mimics the effects of a hay infusion (AtrAedes®, Ecovec, Belo
Horizonte, Brazil). Female mosquitoes attracted by the odor
enter the cylinder to lay eggs, get trapped by the funnel ac-
cess, and eventually stick to an adhesive ribbon that lines the
inner wall of the trap. Each NVRV agent is responsible for
approximately 55 traps that she visits once a week, from
Monday to Friday. On each visit to each trap, agents remove
the adhesive ribbon and check for glued mosquitoes. If the
ribbon has anymosquitoes that the agent identifies as being a
femaleAe. aegypti, the mosquito is sent to a laboratory to test
for dengue, chikungunya, and Zika viruses.
For the purpose of our analysis, we outlined 756 sampling

sites (Figure 1) on a map of Porto Alegre land cover and use
(the Porto Alegre Environmental Diagnostic map29) overlaid
with a map of the Brazilian federal government human so-
cioeconomic census sectors.30 Our sites consist of one to
eighteen (mean ± SD of 4 ± 2.8) adjacent census sectors with
similar landcover andusecharacteristics.Whenever possible,
we avoided mixing green areas with built-up areas, as well as
areas of regular and irregular residential buildings. We sought
to keep site area as constant as possible (28.9 ± 16.9 ha), but
the geography of land cover and use combined with limits of
census sectors resulted in a range of areas spanning three
orders of magnitude, from approximately 5–150 ha. None-
theless, more than half of the sites have between 20 and 32 ha
in area.Ourdata set containsmosquito trappingdata from286
of the 756 sites in the city. Of these 286 sites, there was an
average of 2.5 ± 2.1 traps per site per week. Traps deployed in
the same site and week are treated as replicate samples of a
closed system, so that if trap j detectsAe. aegypti on site i and
week t, any failure to detectmosquitoes in other traps from the
same site and week will be treated as a false-negative result.
We will refer to the deployment of one set of traps in one site
and week as a trapping event. The result from one trapping
event is said to be positive if at least one of the traps captures
one mosquito during that event.
Data analysis.Wemodelled trapping data using Royle and

Kéry’s31 Bayesian state-space implementation of the site-
occupancy dynamics model developed by MacKenzie et al.32

This model formally separates the biological process of site

infestation from the sampling process of mosquito trapping,
with the latter conditioned on the former. Our analysis con-
siders two alternative descriptions of the sampling process
(model I and model II) based on the same description of the
biological process. We represent the infestation state by the
partially observable variable zi,t, which takes the value 1when
site i is infested by Ae. aegypti at time t, and the value 0 oth-
erwise. The trapping data are represented by the variable yi,t,j,
which takes the value 1 when trap j detects Ae. aegypti mos-
quitoes on site i andweek t, and the value 0 otherwise.We say
that yi,t,j is conditioned on zi,t because there can be no positive
trap results for yi,t,j when zi,t =0.
The dynamic component of themodel describes changes in

infestation through time as a first-order Markov process,
where the value of zi,t depends on the value of zi,t�1. At the
outset, when t = 1, we model the infestation state zi,1 as a
Bernoulli trial with infestation probability ψ1, estimated from
the data:

zi,1 ∼Bernðψ1Þ (1)

Subsequently, changes in infestation are given by the
probabilities of local extinction, εt, and colonization, γt, also
estimated from the data. The parameter εt represents the
probability that a site infested at time t will not be infested at
time t + 1; conversely, γt represents the probability that a site
that is not infested at time twill be infested at time t + 1. Thus,
the infestation state after the first week will be a Bernoulli trial
with probability ψi,t +1 given by the following equation:

ψi,tþ 1 ¼
�
1� zi,t

�� γt þ zi,t �ð1� εtÞ: (2)

Thus, if a site is not infested at time t, ψi,t +1 equals γt; if it is
infested,ψi,t +1 equals 1� εt, which can also be described as a
probability of local persistence:
We also want to take into account, however, that γt and εt

are not constant through time. In fact, theymust vary cyclically
throughout the year because the infestation follows a year-
long cycle. To capture this periodic cycling in a mathematical
form, we adapted the model to represent temporal change in
γt and εt by two cosine trigonometric functions33 in logit
space:

logitðγtÞ¼ αγ þβγ cos
�
2π

�
τt � τ0γ

��
(3)

logitðεtÞ¼αε þβε cosð2πðτt � τ0εÞÞ (4)

These functions measure time as a continuous variable τ,
which varies between 0 and 1. Our dataset keeps track of time
with an integer week counter; therefore, for a givenweek t, τt is
themean Julian day of theweek divided by the total number of
days in the year. The parameters α, β, and τ0, indexed by
dynamic parameters γ or ε in Equations (3) and (4), re-
spectively, are estimated from the data. Parameter α gives the
corresponding dynamic parameter mean value, β gives the
amplitude of the cycle, and τ0 gives the time—in τ units—at
which the dynamic parameter takes its maximum value.
Our simplest description of the sampling process (under

model I) treats the probability p of detecting Ae. aegypti
mosquitoes at trap j of infested site i on time t ðyi,t,j =1Þ as
being constant through time, across sites, and between traps
of the same site. Formally, this consists ofmodeling the binary
detection data yi,j,t as a Bernoulli trial with probability zi,t ×p:
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yi,j,t ∼Bern
�
zi,t �p

�
: (5)

This equation captures the hierarchical nature of the model
as it conditions the possibility of a nonzero detection proba-
bility on the biological state of the system.Model II follows the
same logic but inserts a random temporal effect on p, which
will now be indexed by time, so that,

yi,j,t ∼Bern
�
zi,t �pt

�
(6)

The underlying variation of pt in model II is modeled on the
logit scale, as the realization of a random processwithmean μ
and normally distributed deviations from the mean, et:

logitðptÞ¼μþ et (7)

et ∼Normð0,σÞ,
where σ is a logit-scale SD from the mean, which equals zero.
We express pt and its SD on the probability scale using, re-
spectively, an inverse logit function and a delta method
approximation34:

μp ¼
eμ

1þ eμ
(8)

σp ffiσμp

�
1�μp

�
:

We fit our models to data in a Bayesian framework with vague
priors, sampling from the posterior distribution of model param-
eters with a Markov chain Monte Carlo (MCMC) algorithm.35 To
assess model fit, we use the Bayesian posterior predictive dis-
tributionsapproachproposedbyKéryandRoyle.36Theapproach
compares two metrics of discrepancy: one between model pre-
dictions and observed data and the other between model pre-
dictionsanddata expectedunder themodel. Themore similar the
discrepancies, the better the fit. We compute discrepancies
separately for theoccupancydynamicsand thedetectionpartsof
themodel. Occupancydynamics data are summarized as counts
of the four possible types of transition between occupied and
non-occupied states at each time, whereas detection data are
summarized as number of traps that returned a positive result in
each site and time. We use a chi-square discrepancy metric for
both the occupancy and detection parts of the model and a
Freeman–Tukey metric for the detection part alone.36 These
lead to three discrepancy-comparison plots per model, two for
occupancy and one for detection. Because the expected data
are simulatedwithin theMCMCalgorithm, each plot shows one
point per MCMC iteration; the proportion of points above the
diagonal can be interpreted as a Bayesian p-value, with low
values denoting higher discrepancy with observed than
expecteddata,which impliespoorfit. TheMCMCalgorithmwas
implemented with the software JAGS,37 accessed through R38

with the library jagsUI.39 We ran three chains with 15,000 iter-
ations and a burn-in of 2,500 iterations. Model code can be
found in Supplemental Material Appendix 1.
Part of our inference is based on metrics derived from the

dynamicparameters of thesite-occupancymodel.Wederived
three infestation and two sensitivity metrics from the posterior
samples given by the MCMC for both models. The infestation
metrics are also described in Royle and Kéry31 as general
occupancy metrics. The predicted equilibrium infestation
denoted thatψðeqÞ

t is the infestation probability that the system
converges to if γt and εt remain constant for a sufficient time.

We obtained ψðeqÞ
t for each week of the study period, from the

respective values of γt and εt,

ψðeqÞ
t ¼ γt

γt þ εt
(9)

A second infestation metric, infestation probability, repre-
sents the expected infestation rate on the theoretical infinite
statistical population of sites from which our sample was
obtained. This metric is equal to ψ1 when t = 1 and in all
subsequent times is given by the following equation:

ψt ¼ð1�ψt�1Þ� γt þ ψt�1 �ð1� εtÞ: (10)

The third infestation metric is the finite sample infestation,
whichexpresses theactual proportionof sample sites infested
at time t. We denoted this metric ψðfsÞ

t and obtained it from a
function of the latent variables:

ψðfsÞ
t ¼ 1

M
+M

i¼ 1zi,t (11)

withM representing the total number of sampling sites, in this
case 286.
To evaluate how changes in the dynamic parameters—

eventually provoked by control measures—affect the equilibrium
infestation probability, we also obtained two sensitivity metrics,
sγ,t and sε,t, whichmeasure the sensitivity ofψðeqÞ

t to infinitesimal
changes in, respectively, γt and εt. We derived sensitivities as
proposed by Martin et al.,40 using the following equations:

sγ,t ¼ εt

ðεt þ γtÞ2
(12)

and

sε,t ¼ γt
ðγt þ εtÞ2

(13)

which give the derivatives of ψðeqÞ
t , respectively, on γt and εt.

RESULTS

We gathered data from 150,453 trapping events, 33,499
(∼22%) of which returned positive results. The greatest pro-
portion of positive results on any given week was 0.627, in
week 131, the last week ofMarch 2015. Throughout thewhole
204-week study period, there were only 4 weeks with no
positive traps at all. This happened in weeks 47, 49,
50—August and early September 2013—and in week 201, at
the end of July 2016. Observed infestation, the ratio of sites
with positive results to all sites sampled in one week, ranged
from0.854, inweek131, to 0, inweeks47, 49, 50, and201. The
mean observed infestation was 0.434.
Both models I and II fit the occupancy part of the data rea-

sonably well, but model II fits the detection data better. Pos-
terior predictive checks of goodness of fit for model I show
small Bayesian p-values in Figure 2B and C, indicating a low
probability of obtaining a more extreme discrepancy between
model prediction and observed data, under the null hypothe-
sis of a fitting model. The Freeman–Tuckey metric returns a
better fit than the chi-square, but both are lower than 0.04.
Otherwise, Bayesian p-values are always higher than 0.24,
both for the occupancy and detection parts of model II and for
the occupancypart ofmodel I. Detection probability estimates
differ substantially between models. Model I estimates that
approximately one in three traps deployed in an infested area
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will return a positive result (p= 0.37 ± 0.002; Table 1). That is, if
only one trap were set per location, the observed infestation
would be less than half its true value.With three traps, which is
close to the average number of traps per sampled site in this
study, the probability of obtaining at least onepositive result at
an infested site is approximately 0.75. Model II, with random
temporal effects on detection, estimates that pt varies around

a probability-scale mean of μp = 0.15 ± 0.02 and SD of σp =
0.22 ± 0.02 (Table 1). The resulting temporal variation has pt

rising above 0.4 every summer and dipping below 0.04 every
winter (Figure 3B). With pt = 0.04 and three traps, the proba-
bility of obtaining at least one positive result at an infested site
is approximately 0.11, it would take 34 traps to bring that
probability up to 0.75.

FIGURE 2. Goodness-of-fit results for model I (A–C) and model II (D–F) under the posterior predictive distributions approach. Each panel
compares twomeasures of discrepancy: one betweenmodel prediction and observed data (on the x axis) and the other betweenmodel prediction
and expected data (on the y axis). Each dot on a plot represents one sample from the posterior in the corresponding Markov chain Monte Carlo
(MCMC) algorithm. (A,B,D, andE) use a chi-squaremetric of discrepancy on occupancy dynamics data (A andD) and on detection data (B andE).
C and F use the Freeman–Tukey metric of discrepancy, applicable to detection data alone. “Bpv” stands for “Bayesian p-value,” computed as
the proportion of MCMC samples where discrepancy with expected data exceeds discrepancy with observed data.

TABLE 1
Posterior mean ± SD for parameters estimated under models I and II, with their respective verbal descriptions.

Model I Model II Parameter description

ψ1 0.20 ± 0.037 0.63 ± 0.121 Initial infestation probability
αγ −1.36 ± 0.048 −1.65 ± 0.106 Mean logit colonization
βγ −1.05 ± 0.048 −0.90 ± 0.150 Amplitude logit colonization
τ0γ 0.53 ± 0.009 0.54 ± 0.019 Maximum colonization time
αε −1.64 ± 0.043 −3.55 ± 0.101 Mean logit local extinction
βε 2.91 ± 0.071 0.50 ± 0.124 Amplitude logit local extinction
τ0ε 0.61 ± 0.002 0.73 ± 0.048 Maximum local extinction time
p 0.37 ± 0.002 – Fixed detection probability
μp – 0.15 ± 0.016 Random-effect mean detection
σp – 0.22 ± 0.022 Random-effect standard deviation detection
ψðeqÞ

max 0.97 ± 0.002 Febuary 4–7 0.94 ± 0.005 Febuary 1–26 Maximum equilibrium infestation probability.
ψðeqÞ

min 0.10 ± 0.003 July 21–28 0.66 ± 0.033 Jul 30–August 21 Minimum equilibrium infestation probability.
sγ,max 1.95 ± 0.119 May 15–21 3.10 ± 0.777 July 13–August 5 Sensitivity to change in colonization
sε,max 3.45 ± 0.249 April 3–9 7.20 ± 1.323 May 22–July 8 Sensitivity to change in local extinction
Parameters are organized in three groups: the first (ψ1–τ0ε , from Equations 1–4) describes occupancy dynamics; the second (p–σp , from Equations 5–8) describes detection; and the third

(ψðeqÞ
max – sε,max, based on Equations 9, 12, and 13) shows extreme values of equilibrium occupancy (maximumandminimum) and sensitivity (onlymaximum). Time intervals indicate the 95%credible

intervals for the date with the most extreme value of the corresponding parameter and model. The first two groups of parameters are directly estimated from the data, the third is derived.
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The annual oscillation in mosquito infestation is evident from
the temporal variation of ψðeqÞ

t under both models (Figure 4). On
average, model II oscillates about one to two weeks later than
model I, but both peak in February and reachminimum values in
late July to early August (Table 1). The key difference in ψðeqÞ

t
predictions betweenmodels is in the amplitude of the oscillation,
not its timing. Bothmodels predict peak infestation of more than
90%of the sites; however, whereasmodel I predicts aminimum
of 10%, model II—accounting for lower detection probability in
winter—puts the minimum at more than 60%. Qualitatively, the
values of ψðeqÞ

t behave similarly to those of ψt (population in-
festation) and ψðfsÞ

t (finite sample infestation), but they tend to
change earlier. Such anticipation is higher on average for model
II, butwith substantial overlap in the credible intervals of the three
metrics for any given time (Figure 3). Observed infestation was
almost always lower than both ψðeqÞ

t and ψt. During weeks
150–156, in the abnormally warm winter of 2015, however, ob-
served infestationwasexceptionallyhigh (Figure3). Formodel I, it
wasevenhigher than theposteriormeansofψðeqÞ

t orψt,whichdo

not express variation between years. In both models, the in-
festation metric that best captures inter-annual variation is ψðfsÞ

t .
The year 2015, with higher values of ψðfsÞ

t during winter, had the
lowest variance of ψðfsÞ

t of all years, according to both models.
Variability in infestation metrics reflects variability in local ex-

tinction ðεtÞ andcolonization ðγtÞ rates (Figure4).Onaverageand
for both models, γt peaks in early summer, during the sec-
ond week of January, a few weeks before the maximum value
of ψðeqÞ

t . The amplitude of variation in γt is slightly higher for
model I than for model II, but the biggest difference in dynamics
parameters between models is the amplitude of variation in εt.
According to model II, the probability of local extinction never
rises above0.05. Formodel I, it reaches near zero in summer and
almost 0.8 in winter, driving the wider oscillation in infestation
metrics. The variationof sensitivity throughout the year has lower
amplitude forγt ðsγ,tÞ than for εt (sε,t; Figure5) underbothmodels.
Maximumvaluesofboth sγ,t and sε,t arehigherandoccur later for
model II than for model I. Nevertheless, under both models,
equilibrium occupancy is most sensitive to changes in dynamic

FIGURE 3. Different metrics of infestation by Aedes aegypti throughout the sampling period, according to model I (A) and model II (B). Empty
circles show observed infestation, the proportion of sampled sites which had at least one Ae. aegypti capture in the corresponding week; they
convey exactly the same information in both panels. Three black lines on each panel show posterior mean values for three metrics of infestation
probability: finite sample infestation (ψðfsÞ

t ; solid line), population infestation (ψt; dashed line), and equilibrium infestation predicted under current
dynamic parameter (εt, γt ) estimates (ψ ðeqÞ

t ; dotted line). Gray shading around the black lines represents 250 infestation predictions for each black
line, each based on one random sample of parameters (α, β, and t0) from the posterior. The jagged dashed-and-dotted line on the lower part of (B)
shows detection probability ðptÞ as it varies in time according to model II. Gray shading around this line represents 250 random samples from the
posterior distribution of pt. The fixed value of p estimated bymodel I as 0.37 ± 0.002 is omitted from the upper panel for simplicity of representation.
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parameters during the fall and early winter months, when it is
declining or reaching its lowest value.

DISCUSSION

Hierarchical modeling enabled us to account for the in-
evitable imperfection of the observation process. Some traps
deployed in sites that are infestedmay not detectmosquitoes.
By aggregating data from more than one trap per site, we
estimated the probability that a trap does detect mosquitoes
at an infested site and, concomitantly, the probability that
mosquitoes are present in siteswhere theywere not detected.
On this footing, we built two models that differ in their treat-
ment of temporal variation in detection probability: model I
held it constant and model II let it vary according to a random
effect. Both treated variation of infestation as a Markov pro-
cesswhere changes between infested and noninfested states
are ruled by occupancy dynamics parameters that oscillate
throughout the year. Because we aim to predict appropriate
timing for application of control measures in future years—for
which we have no environmental data—we opted for a simple
phenomenological representation of oscillation based on a
trigonometric function. Thus, we prioritized general prediction
of what may happen in the near future, over the mechanistic
understanding of what did happen in the recent past.

Bothmodels predicted cyclical variation in infestationwith a
maximum in February and a minimum in July–August; the
population of Ae. aegypti never completely disappeared dur-
ing the winter. This result places the city of Porto Alegre in
Scenario 2 of classification of intra-annual occurrence of Ae.
aegypti by Eisen et al.3 These locations have “year-around
activity but potential for high abundance of the active stages
only during the most favorable part of the year.”3 Because
model I bars temporal variation in detection, it more readily
takes absence of mosquito captures as evidence of mosquito
absence. As a result, (austral) winter infestation estimates are
much lower for model I than for model II. Underlying this dif-
ference, there is a sharp contrast between estimates of local
extinction probability, with model I predicting steep oscilla-
tion, whereas model II predicts low and much more constant
values. Despite the differences, however, the two models
produce qualitatively similar sensitivity results. Sensitivity of
equilibrium infestation to changes in dynamic parameters
peaks in autumn and early winter months, when infestation is
declining or reaching its lowest values.
Given the sensitivity results, one is tempted to conclude that

control measures will be most effective from April to July,
when sensitivity is at its highest. But that depends on the
meaning of “effective control.” Permanence of infestation
throughout the year in Scenario 2 locations motivates

FIGURE 4. Colonization probability (γt; solid line), local extinction probability (εt; dashed line), and equilibrium occupancy (ψðeqÞ
t ; dotted line)

estimated by model I (A) andmodel II (B) throughout the year. Black lines (solid, dashed, or dotted) showmean predicted values for each day; gray
shading around the black lines represents uncertainty about the predicted values. Each shade includes 250 predictions of the respective variation,
each resulting from one sample of underlying (α, β, and t0) parameters from their respective posterior distributions.
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constant monitoring of disease cases and application of re-
active mosquito control measures whenever needed to sup-
press further infections. This happens in Porto Alegre,41 and in
other Scenario 2 cities such as Cairns, Australia.42 It seems
reasonable, in this context, to evaluate effectivenessof control
by some assessment of transmission avoidance. Indeed,
Marini et al.28 fitted a model of Ae. aegypti abundance and
disease transmission to Porto Alegre data on mosquito cap-
tures and transmission clusters,41 inferring that vector control
avoided nearly one-quarter of potential disease cases for their
study period. Reactive control measures are necessary
whenever transmission is occurring, and their effectiveness
should be measured by transmission avoidance. But pre-
ventive vector control can play an important part in epidemics
prevention, and its effectiveness should be gauged by impact
on the vector population.
Does occupancy provide a reasonable gauge to effective-

ness of mosquito control? Abundance is arguably the most
important state variable in population biology,43 and vector
abundance plays a key role in the propagation of infectious
disease.44 Egg quiescence,45 larvae interspecific interac-
tions,46 and climate influences on survival and reproduction47

are only a fewof the fascinating processes that drivemosquito
abundance and are not directly captured by an occupancy
model. Our reason to favor occupancy instead of abundance,

in the context of this study, is twofold: first, unbiased estimation
of abundance for small, elusive, and highly mobile animals is
exceedingly difficult, especially over the space of an entire city;
second,occupancymodelingoffersadirect link to theanalytical
tools of metapopulation biology,48 originally developed for the
study of insect populations49 and well suited for investigating
sensitivity to change in dynamic parameters.40 Occupancy
dynamicsmodels are easy to fit within the hierarchicalmodeling
framework32and,althoughabstractingaway fromdemographic
detail, they estimate a quantity—occupancy—that is strongly
correlated to abundance.50–52

Shifting the focus of analysis from the individual to the site
requires delimiting sites. Our main delimitation concerns were
area, identifiability in the field, and homogeneity of land cover
and use.Metapopulationmodels often define sites as discrete
habitat patches that may contain one local population of the
study species. This is not our case but does not preclude an
occupancy approach because site occupancy can be usefully
interpreted as the probability that a site is used by at least one
individual of the study species during all or part of a time pe-
riod.53 There is no loss from animals frequently crossing be-
tween adjacent sites that are not large enough to sustain an
isolated population. Likewise, inhomogeneous distribution of
mosquitoes within a site, as resulting from clustering of
infested houses, is entirely compatible with our approach.

FIGURE 5. Sensitivity of equilibrium occupancy to changes in probability of colonization (solid line) and probability of extinction (dashed line) as it
varies throughout the year according to model I (A) and model II (B). Gray shading around the black lines represents 250 predictions of the same
variation, based on random samples of underlying parameters (α, β, and t0) from their respective posterior distributions.
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That is, as long as traps are located randomly with respect to
the position of clusters,54 which cannot be far from our case
becauseagents haveno information about infestation clusters
before choosing trap locations. Clustering will decrease de-
tection probability as some traps will not coincide with clus-
ters, but it should not bias occupancy estimation.
“All models are wrong,”55 but some are useful. Models I and II

agree on a few important aspects but differ with respect to os-
cillation amplitude and minimum infestation. Which is closer to
the truth?Model I is a bettermatch to the intuitionof PortoAlegre
residents, who will hardly find mosquitoes during the winter.
However, the better fit ofmodel II, and the soundness of allowing
for variation in detection, must give one pause. Seasonal varia-
tion in occupancy necessarily follows variation in within-site
abundance.Suchvariationaffectsdetection, as theprobability of
trapping at least one mosquito (i.e., detecting the species) goes
up with the number available for trapping.56 As pt drops below
0.1 in the winter, however, the minimum probability of site oc-
cupancy by adultmosquitoes is estimated atmore than 0.6. This
is at odds with field perception but appears more reasonable if
oneconsiders that low-abundanceoccupancy isstill occupancy.
The truth is likely somewherebetween the twomodels.Wecould
learnmoreaboutwinterdetectionprobability fromastudydesign
withmore traps per site57 and use the outcome of such study as
an informative prior in future analysis of NVRV data.
Predicted equilibrium occupancy of the Porto Alegre Ae.

aegypti population is most sensitive to small changes in occu-
pancy dynamics parameters during the autumn and early winter
months.Whether thisfinding leads to improvedpreventivecontrol
depends on the availability and application of measures that ac-
tually change the parameters. Reports of the low duration of
ultralow-volume insecticide spraying effects28,58 reveal the diffi-
cultyof impacting localextinctionorcolonization.Wedonotknow
what control measures most directly affect one or the other dy-
namicparameter,but the ideaofapplyingpreventivecontrolwhen
occupancy is declining makes good biological sense. All else
being equal, when control succeeds in eliminating mosquitoes
from one site, recolonization will happen sooner whenmore sites
are occupied. It is also reasonable to think that control measures
in the fall will reduce the winter egg stock and, thus, limit in-
festation through the whole next year. Coincidentally or not, a
study of spatiotemporal patterns of dengue epidemic events in
Argentina found a positive relationship between average fall
temperature and the number of dengue cases reported in the
subsequent year.59 Perhaps, the most serious challenge to
autumn/winter control is the cost of obtaining sufficient coverage
to reach the relatively few occupied sites. Cost can be factored
into sensitivity analysis of occupancy dynamics models to eval-
uate whether increased sensitivity merits the additional spend-
ing.40 At the same time, some control measures may improve
coverage at reasonable cost such as indoor spraying60 and
mosquito-disseminated larvicides.61
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Appendix I
Code for dynamic occupancy models of the Porto Alegre mosquito population

Guilherme B. Mores et al.

Code for implementing the mosquito infestation models in “Site occupancy by Aedes aegypti in a subtropical
city is most sensitive to control during autumn and winter months” (Mores et al. 2020). The first step in the
following code is to load the R workspace “PAMosqData.RData”, which can be obtained from the authors
at the corresponndence e-mail.

## Load the worskpace
load("PAMosqData.RData")

The workspace has three objects:

DATA: A 286x11x204 array with dimensions corresponding to number of sites, maximum number of traps
per site and number of weeks in the study. This array contains ones and zeros, which indicate whether the
species was (1) or was not (0) detected in the corresponding sitextrapxweek combination. NAs indicating
non-existing traps and are used in site week combinations with fewer than 11 traps.

tindex: a time index vector that converts Julian days into a [0,1] scale, accounting for leap years.

sn: a very small number that will be used to avoid division from zero.

Once the workspace is loaded, create the data object that will be passed on to JAGS.

str(jags.data <- list(y = DATA,
M = dim(DATA)[1], J = dim(DATA)[2], T = dim(DATA)[3],
Xtemp = tindex, pi = pi, e = sn))

Next, specify the BUGS language model for occupancy dynamics with fixed p (Model I):

sink("TrigDinfixp.txt")
cat("
model {

# Specify priors
alpha.gamma <- logit(gamma.intercept) # Alpha colonization in logit space
beta.gamma ~ dnorm(0, 0.0001) # Beta colonization, second value is 1/variance
alpha.epslon <- logit(epslon.intercept) # Alpha extinction in logit space
beta.epslon ~ dnorm(0, 0.0001) # Beta extinction, second value is 1/variance
gamma.intercept ~ dunif(0,1) # Colonization intercept
epslon.intercept ~ dunif(0,1) # Extinction intercept
#p.intercept ~ dunif(0,1) # Detection intercept
psi1 ~ dunif(0,1) # Probability of occupancy on time 1
p ~ dunif(0,1) # fixed detection probability
t0.gamma ~ dunif(0,1) # t0 colonization
t0.epslon ~ dunif(0,1) # t0 extinction
#for(t in 1:T){
# p[t] ~ dunif(0,1) #Probability of detection at each week
#}

1
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# Ecological submodel: Define state conditional on parameters
for (i in 1:M) { # Loop through sites

muZ[i,1] <- psi1
z[i,1] ~ dbern(muZ[i,1]) # Ocupancy of time 1

} #i

for(t in 1:(T-1)){ # Loop through time
X.epslon[t] <- 2*pi*Xtemp[t] - 2*pi*t0.epslon # inner part extinction cosine fucntion
logit(epslon[t]) <- alpha.epslon + beta.epslon*cos(X.epslon[t]) # Extinction at time t
X.gamma[t] <- 2*pi*Xtemp[t] - 2*pi*t0.gamma # Inner part colonization cosine fucntion
logit(gamma[t]) <- alpha.gamma + beta.gamma*cos(X.gamma[t]) # Colonization at time t
for (i in 1:M){ # Loop through sites

muZ[i,t+1]<- z[i,t]*(1 - epslon[t]) + (1-z[i,t])*gamma[t] # Psi at time t
z[i,t+1] ~ dbern(muZ[i,t+1]) # Occupancy process at time t

} #i
} #t

#Observation model
for (t in 1:T){ # Loop through time

for (i in 1:M){ # Loop through sites
for (j in 1:J){ # Loop through traps

muY[i,j,t] <- z[i,t]*p #[t]
y[i,j,t] ~ dbern(muY[i,j,t])

} #t
} #j

} #i

# GoF computation part of code
# (based on posterior predictive distributions)

# Simulate a replicate data set according to the fitted model
for (i in 1:M){

for (t in 1:T){
for (j in 1:J){

yrep[i,j,t] ~ dbern(z[i,t] * p) #[t])
} #j

} #t
} #i

# GOF computations for the open part of the model, which represents
# change in occupancy through time

# Compute observed z matrix from observed and replicated data
for (i in 1:M){

for (t in 1:T){
zobs[i,t] <- max(y[i,,t]) # From observed data
zobsrep[i,t] <- max(yrep[i,,t]) # From replicated data

} #t
# Identify extinctions, persistence, colonization and non-colonizations
for (t in 2:T){

# using observed data
ext[i,(t-1)] <- equals(zobs[i,t],0) * equals(zobs[i,t-1],1)
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nonext[i,(t-1)] <- equals(zobs[i,t],1) * equals(zobs[i,t-1],1)
colo[i,(t-1)] <- equals(zobs[i,t],1) * equals(zobs[i,t-1],0)
noncolo[i,(t-1)] <- equals(zobs[i,t],0) * equals(zobs[i,t-1],0)
# with replicated data
extrep[i,(t-1)] <- equals(zobsrep[i,t],0) * equals(zobsrep[i,t-1],1)
nonextrep[i,(t-1)] <- equals(zobsrep[i,t],1) * equals(zobsrep[i,t-1],1)
colorep[i,(t-1)] <- equals(zobsrep[i,t],1) * equals(zobsrep[i,t-1],0)
noncolorep[i,(t-1)] <- equals(zobsrep[i,t],0)*equals(zobsrep[i,t-1],0)

} #t
} #m

# Tally up number of transitions and put into a matrix for each year
for(t in 1:(T-1)){

# with observed data
tm[1,1,t] <- sum(noncolo[,t]) # transition mat for obs. data
tm[1,2,t] <- sum(colo[,t])
tm[2,1,t] <- sum(ext[,t])
tm[2,2,t] <- sum(nonext[,t])
# with replicated data
tmrep[1,1,t] <- sum(noncolorep[,t]) # transition mat for rep. data
tmrep[1,2,t] <- sum(colorep[,t])
tmrep[2,1,t] <- sum(extrep[,t])
tmrep[2,2,t] <- sum(nonextrep[,t])

} #t

# Compute expected numbers of transitions under the model
# Probability of each individual transition
for(i in 1:M){

for(t in 1:(T-1)){
noncolo.exp[i,t] <- (1-muZ[i,t]) * (1-gamma[t])
colo.exp[i,t] <- (1-muZ[i,t]) * gamma[t]
ext.exp[i,t] <- muZ[i,t] * epslon[t]
nonext.exp[i,t] <- muZ[i,t] * (1- epslon[t])

}#t
}#i

# Sum up over sites to obtain the expected number of those transitions
for(t in 1:(T-1)){

Etm[1,1,t] <- sum(noncolo.exp[,t])
Etm[1,2,t] <- sum(colo.exp[,t])
Etm[2,1,t] <- sum(ext.exp[,t])
Etm[2,2,t] <- sum(nonext.exp[,t])

}#t

# Compute Chi-square discrepancy
for(t in 1:(T-1)){

# from observed data
x2Open[1,1,t] <- pow((tm[1,1,t] - Etm[1,1,t]), 2) / (tm[1,1,t]+e)
x2Open[1,2,t] <- pow((tm[1,2,t] - Etm[1,2,t]), 2) / (tm[1,2,t]+e)
x2Open[2,1,t] <- pow((tm[2,1,t] - Etm[2,1,t]), 2) / (tm[2,1,t]+e)
x2Open[2,2,t] <- pow((tm[2,2,t] - Etm[2,2,t]), 2) / (tm[2,2,t]+e)
# ... for replicated data
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x2repOpen[1,1,t] <- pow((tmrep[1,1,t]-Etm[1,1,t]),2)/(tmrep[1,1,t]+e)
x2repOpen[1,2,t] <- pow((tmrep[1,2,t]-Etm[1,2,t]),2)/(tmrep[1,2,t]+e)
x2repOpen[2,1,t] <- pow((tmrep[2,1,t]-Etm[2,1,t]),2)/(tmrep[2,1,t]+e)
x2repOpen[2,2,t] <- pow((tmrep[2,2,t]-Etm[2,2,t]),2)/(tmrep[2,2,t]+e)

}#t

# Add up overall test statistic and compute fit stat ratio (open part)
Chi2Open <- sum(x2Open[,,]) # Chisq. statistic for observed data
Chi2repOpen <- sum(x2repOpen[,,]) # Chisq. statistic for replicated data

# Computations for the GoF of the closed part of the model
# (based on the number of times detected, i.e., detection frequencies)

# Compute detection frequencies for observed and replicated data
for (i in 1:M){

for (t in 1:T){
# Det. frequencies for observed and replicated data
detfreq[i,t] <- sum(y[i,,t])
detfreqrep[i,t] <- sum(yrep[i,,t])
# Expected detection frequencies under the model
for (j in 1:J){

tmp[i,j,t] <- z[i,t] * p #[t]
}
E[i,t] <- sum(tmp[i,,t]) # Expected number of detections
# Chi-square and Freeman-Tukey discrepancy measures
# ..... for actual data set
x2Closed[i,t] <- pow((detfreq[i,t] - E[i,t]),2) / (E[i,t]+e)
ftClosed[i,t] <- pow((sqrt(detfreq[i,t]) - sqrt(E[i,t])),2)
# ..... for replicated data set
x2repClosed[i,t] <- pow((detfreqrep[i,t] - E[i,t]),2) / (E[i,t]+e)
ftrepClosed[i,t] <- pow((sqrt(detfreqrep[i,t]) - sqrt(E[i,t])),2)

} # t occasions
} # i sites

# Add up Chi-square and FT discrepancies and compute fit stat ratio(closed part)
Chi2Closed <- sum(x2Closed[,])
FTClosed <- sum(ftClosed[,])
Chi2repClosed <- sum(x2repClosed[,])
FTrepClosed <- sum(ftrepClosed[,])

# Derived parameters: Infestation metrics
psi[1] <- psi1 # Population infestation at time 1
n.occ[1] <- sum(z[1:M,1])/M # Finite sample infestation at time 1

for (t in 1:(T-1)){ # Loop through time
psi[t+1] <- psi[t]*(1-epslon[t]) + (1-psi[t])*gamma[t] # Population infestation at time t
n.occ[t+1] <- sum(z[1:M,t+1])/M # Finite sample infestation at time t
psi.eq[t] <- gamma[t]/(gamma[t] + epslon[t]) # Equilibrium infestation at time t

}#t
}
",fill = TRUE)
sink()
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Fit model I and examine results:

# Set initial values
zst <- apply(DATA, c(1, 3), max, na.rm = TRUE) # Observed occurrence as inits for z
zst[zst == '-Inf'] <- 1 # max of c(NA,NA,NA) with na.rm = TRUE returns -Inf, change to 1
inits <- function(){ list(z = zst)}

## Parameters to monitor
params <- c("alpha.epslon","beta.epslon","t0.epslon","alpha.gamma","beta.gamma","t0.gamma",

"p","psi1","psi","n.occ","psi.eq","Chi2Closed","Chi2repClosed",
"Chi2Open","Chi2repOpen","FTClosed","FTrepClosed")

# MCMC test settings
ni <- 150; nt <- 1; nb <- 20; nc <- 3; na <- 20
# MCMC run settings
#ni <- 15000; nt <- 1; nb <- 2000; nc <- 3; na <- 2000

# Call JAGS from R
library(jagsUI)
fixpgof <- jags(jags.data, inits, params, "TrigDinfixp.txt",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb,n.adapt = na,
parallel =T)

save(fixpgof, file = "Fixpgof.RData")

# Show general results
par(mfrow = c(3,3))
traceplot(fixpgof)
par(mfrow = c(1,1))
View(fixpgof)
print(fixpgof, 2)
# Process gof results
Chi2ratioOpen<-fixpgof$sims.list$Chi2Open/fixpgof$sims.list$Chi2repOpen
Chi2ratioClosed<-fixpgof$sims.list$Chi2Closed/fixpgof$sims.list$Chi2repClosed
# Bayesian p value
bpvopen <- sum(fixpgof$sims.list$Chi2repOpen > fixpgof$sims.list$Chi2Open) /

length(fixpgof$sims.list$Chi2repOpen)

The following BUGS code specifies the occupancy dynamics with temporal random effects on p (Model II)

sink("TrigDinRandp.txt")
cat("

model {

# Specify priors
alpha.gamma <- logit(gamma.intercept) # Alpha colonization in logit space
beta.gamma ~ dnorm(0, 0.0001) # Beta colonization, second value is 1/variance
alpha.epslon <- logit(epslon.intercept) # Alpha extinction in logit space
beta.epslon ~ dnorm(0, 0.0001) # Beta extinction, second value is 1/variance
gamma.intercept ~ dunif(0,1) # Colonization intercept
epslon.intercept ~ dunif(0,1) # Extinction intercept
psi1 ~ dunif(0,1) # Probability of occupancy on time 1
t0.gamma ~ dunif(0,1) # t0 colonization
t0.epslon ~ dunif(0,1) # t0 extinction
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# Detection random effects
mean.p ~ dunif(0,1) # p mean on 0-1 scale
l.p <- logit(mean.p) # p mean on logit scale
sd.p ~ dunif(0,10) # p sd on logit scale
tau.p <- pow(sd.p,-2) # p precision on logit scale
for(t in 1:T){

logit(p[t]) <- lp[t]
lp[t] ~ dnorm(l.p,tau.p) #Time-varying logit probability of detection. Per week

}

# Ecological submodel: Define state conditional on parameters
for (i in 1:M) { # Loop through sites

muZ[i,1] <- psi1
z[i,1] ~ dbern(muZ[i,1]) # Ocupancy of time 1

} #i

for(t in 1:(T-1)){ # Loop through time

X.epslon[t] <- 2*pi*Xtemp[t] - 2*pi*t0.epslon # Inner part extinction cosine fucntion
logit(epslon[t]) <- alpha.epslon + beta.epslon*cos(X.epslon[t]) # Extinction at time t
X.gamma[t] <- 2*pi*Xtemp[t] - 2*pi*t0.gamma # Inner part colonization cosine fucntion
logit(gamma[t]) <- alpha.gamma + beta.gamma*cos(X.gamma[t]) # Colonization at time t

for (i in 1:M){ # Loop through sites
muZ[i,t+1]<- z[i,t]*(1 - epslon[t]) + (1-z[i,t])*gamma[t] # Psi at time t
z[i,t+1] ~ dbern(muZ[i,t+1]) # Occupancy process at time t

} #i
} #t

#Observation model

for (t in 1:T){ # Loop through time
for (i in 1:M){ # Loop through sites

for (j in 1:J){ # Loop through traps
muY[i,j,t] <- z[i,t]*p[t]
y[i,j,t] ~ dbern(muY[i,j,t])

} #t
} #j

} #i

# GoF computation part of code
# (based on posterior predictive distributions)

# Draw a replicate data set under the fitted model
for (i in 1:M){

for (t in 1:T){
for (j in 1:J){

yrep[i,j,t] ~ dbern(z[i,t] * p[t])
} #j

} #t
} #i

# Computations for the GoF of the open part of the model
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# Compute observed z matrix for observed and replicated data
for (i in 1:M){

for (t in 1:T){
zobs[i,t] <- max(y[i,,t]) # For observed data
zobsrep[i,t] <- max(yrep[i,,t]) # For replicated data

} #t

# Identify extinctions, persistence, colonization and non-colonizations
for (t in 2:T){

# ... for observed data
ext[i,(t-1)] <- equals(zobs[i,t],0) * equals(zobs[i,t-1],1)
nonext[i,(t-1)] <- equals(zobs[i,t],1) * equals(zobs[i,t-1],1)
colo[i,(t-1)] <- equals(zobs[i,t],1) * equals(zobs[i,t-1],0)
noncolo[i,(t-1)] <- equals(zobs[i,t],0) * equals(zobs[i,t-1],0)
# ... for replicated data
extrep[i,(t-1)] <- equals(zobsrep[i,t],0) * equals(zobsrep[i,t-1],1)
nonextrep[i,(t-1)] <- equals(zobsrep[i,t],1) * equals(zobsrep[i,t-1],1)
colorep[i,(t-1)] <- equals(zobsrep[i,t],1) * equals(zobsrep[i,t-1],0)
noncolorep[i,(t-1)] <- equals(zobsrep[i,t],0)*equals(zobsrep[i,t-1],0)

} #t
} #m

# Tally up number of transitions and put into a matrix for each year
for(t in 1:(T-1)){

# ... for observed data
tm[1,1,t] <- sum(noncolo[,t]) # transition mat for obs. data
tm[1,2,t] <- sum(colo[,t])
tm[2,1,t] <- sum(ext[,t])
tm[2,2,t] <- sum(nonext[,t])
# ... for replicated data
tmrep[1,1,t] <- sum(noncolorep[,t]) # transition mat for rep. data
tmrep[1,2,t] <- sum(colorep[,t])
tmrep[2,1,t] <- sum(extrep[,t])
tmrep[2,2,t] <- sum(nonextrep[,t])

} #t

# Compute expected numbers of transitions under the model
# Probability of each individual transition
for(i in 1:M){

for(t in 1:(T-1)){
noncolo.exp[i,t] <- (1-muZ[i,t]) * (1-gamma[t])
colo.exp[i,t] <- (1-muZ[i,t]) * gamma[t]
ext.exp[i,t] <- muZ[i,t] * epslon[t]
nonext.exp[i,t] <- muZ[i,t] * (1- epslon[t])

}#t
}#i

# Sum up over sites to obtain the expected number of those transitions
for(t in 1:(T-1)){

Etm[1,1,t] <- sum(noncolo.exp[,t])
Etm[1,2,t] <- sum(colo.exp[,t])
Etm[2,1,t] <- sum(ext.exp[,t])
Etm[2,2,t] <- sum(nonext.exp[,t])
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}#t

# Compute Chi-square discrepancy
for(t in 1:(T-1)){

# ... for observed data
x2Open[1,1,t] <- pow((tm[1,1,t] - Etm[1,1,t]), 2) / (tm[1,1,t]+e)
x2Open[1,2,t] <- pow((tm[1,2,t] - Etm[1,2,t]), 2) / (tm[1,2,t]+e)
x2Open[2,1,t] <- pow((tm[2,1,t] - Etm[2,1,t]), 2) / (tm[2,1,t]+e)
x2Open[2,2,t] <- pow((tm[2,2,t] - Etm[2,2,t]), 2) / (tm[2,2,t]+e)
# ... for replicated data
x2repOpen[1,1,t] <- pow((tmrep[1,1,t]-Etm[1,1,t]),2)/(tmrep[1,1,t]+e)
x2repOpen[1,2,t] <- pow((tmrep[1,2,t]-Etm[1,2,t]),2)/(tmrep[1,2,t]+e)
x2repOpen[2,1,t] <- pow((tmrep[2,1,t]-Etm[2,1,t]),2)/(tmrep[2,1,t]+e)
x2repOpen[2,2,t] <- pow((tmrep[2,2,t]-Etm[2,2,t]),2)/(tmrep[2,2,t]+e)

}#t

# Add up overall test statistic and compute fit stat ratio (open part)
Chi2Open <- sum(x2Open[,,]) # Chisq. statistic for observed data
Chi2repOpen <- sum(x2repOpen[,,]) # Chisq. statistic for replicated data

# Computations for the GoF of the closed part of the model
# (based on the number of times detected, i.e., detection freqiencies)

# Compute detection frequencies for observed and replicated data
for (i in 1:M){

for (t in 1:T){
# Det. frequencies for observed and replicated data
detfreq[i,t] <- sum(y[i,,t])
detfreqrep[i,t] <- sum(yrep[i,,t])
# Expected detection frequencies under the model
for (j in 1:J){

tmp[i,j,t] <- z[i,t] * p[t]
}
E[i,t] <- sum(tmp[i,,t]) # Expected number of detections
# Chi-square and Freeman-Tukey discrepancy measures
# ..... for actual data set
x2Closed[i,t] <- pow((detfreq[i,t] - E[i,t]),2) / (E[i,t]+e)
ftClosed[i,t] <- pow((sqrt(detfreq[i,t]) - sqrt(E[i,t])),2)
# ..... for replicated data set
x2repClosed[i,t] <- pow((detfreqrep[i,t] - E[i,t]),2) / (E[i,t]+e)
ftrepClosed[i,t] <- pow((sqrt(detfreqrep[i,t]) - sqrt(E[i,t])),2)

}
}

# Add up Chi-square and FT discrepancies and compute fit stat ratio(closed part)
Chi2Closed <- sum(x2Closed[,])
FTClosed <- sum(ftClosed[,])
Chi2repClosed <- sum(x2repClosed[,])
FTrepClosed <- sum(ftrepClosed[,])

# Derived parameters: Infestation metrics
psi[1] <- psi1 # Population infestation at time 1
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n.occ[1] <- sum(z[1:M,1])/M # Finite sample infestation at time 1

for (t in 1:(T-1)){ # Loop through time
psi[t+1] <- psi[t]*(1-epslon[t]) + (1-psi[t])*gamma[t] # Population infestation time t
n.occ[t+1] <- sum(z[1:M,t+1])/M # Finite sample infestation at time t
psi.eq[t] <- gamma[t]/(gamma[t] + epslon[t]) # Equilibrium infestation at time t

}#t

}
",fill = TRUE)
sink()

Fit model II and examine results:

# Set initial values
zst <- apply(DATA, c(1, 3), max, na.rm = TRUE) # Observed occurrence as inits for z
zst[zst == '-Inf'] <- 1 # max of c(NA,NA,NA) with na.rm = TRUE returns -Inf, change to 1
inits <- function(){ list(z = zst)}

## Parameters to monitor
params <- c("alpha.epslon","beta.epslon","t0.epslon","alpha.gamma","beta.gamma","t0.gamma",

"mean.p","sd.p","p","psi1","psi","n.occ","psi.eq","Chi2Closed","Chi2repClosed",
"FTClosed","FTrepClosed","Chi2Open","Chi2repOpen")

# MCMC test settings
ni <- 150; nt <- 1; nb <- 20; nc <- 3; na <- 20
# MCMC run settings
#ni <- 15000; nt <- 2; nb <- 2000; nc <- 3; na <- 2000

# Call JAGS from R
library(jagsUI)
randpgof <- jags(jags.data, inits, params, "TrigDinRandp.txt",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb,n.adapt = na,
parallel =T)

save(randpgof, file = "Randpgof.RData")

# Show general results
par(mfrow = c(3,3))
traceplot(randpgof)
par(mfrow = c(1,1))
View(randpgof)
print(randpgof, 2)
# Process gof results
Chi2ratioOpen<-randpgof$sims.list$Chi2Open/randpgof$sims.list$Chi2repOpen
Chi2ratioClosed<-randpgof$sims.list$Chi2Closed/randpgof$sims.list$Chi2repClosed
# Bayesian p value
bpvopen <- sum(randpgof$sims.list$Chi2repOpen > randpgof$sims.list$Chi2Open) /

length(randpgof$sims.list$Chi2repOpen)
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